Convergence of the Proximal Point Method for Quasiconvex Minimization
نویسندگان
چکیده
This paper extends the full convergence of the classic proximal point method to solve continuous quasiconvex minimization problems in Euclidian spaces. Under the assumption that the global minimizer set is nonempty we prove the full convergence of the sequence generated by the method to a certain generalized critical point of the problem.
منابع مشابه
Proximal Point Methods for Functions Involving Lojasiewicz, Quasiconvex and Convex Properties on Hadamard Manifolds
This paper extends the full convergence of the proximal point method with Riemannian, Semi-Bregman and Bregman distances to solve minimization problems on Hadamard manifolds. For the unconstrained problem, under the assumptions that the optimal set is nonempty and the objective function is continuous and either quasiconvex or satisfies a generalized Lojasiewicz property, we prove the full conve...
متن کاملInexact scalarization proximal methods for multiobjective quasiconvex minimization on Hadamard manifolds
In this paper we extend naturally the scalarization proximal point method to solve multiobjective unconstrained minimization problems, proposed by Apolinario et al.[1], from Euclidean spaces to Hadamard manifolds for locally Lipschitz and quasiconvex vector objective functions. Moreover, we present a convergence analysis, under some mild assumptions on the multiobjective function, for two inexa...
متن کاملAn Extension of the Proximal Point Method for Quasiconvex Minimization
In this paper we propose an extension of the proximal point method to solve minimization problems with quasiconvex objective functions on the Euclidean space and the nonnegative orthant. For the unconstrained minimization problem, assumming that the function is bounded from below and lower semicontinuous we prove that iterations {x} given by 0 ∈ ∂̂(f(.)+(λk/2)||.−x||)(x) are well defined and if,...
متن کاملGeneralized Proximal Point Algorithms for Quasiconvex Programming
In this paper, we proposed algorithms interior proximal methods based on entropylike distance for the minimization of the quasiconvex function subjected to nonnegativity constraints. Under the assumptions that the objective function is bounded below and continuously differentiable, we established the well definedness of the sequence generated by the algorithms and obtained two important converg...
متن کاملSteepest descent method for quasiconvex minimization on Riemannian manifolds
This paper extends the full convergence of the steepest descent algorithm with a generalized Armijo search and a proximal regularization to solve quasiconvex minimization problems defined on complete Riemannian manifolds. Previous convergence results are obtained as particular cases of our approach and some examples in non Euclidian spaces are given.
متن کامل